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Analysis of Wave Propagation in Optical Fibers
Having Core with a-Power Refractive-Index

Distribution and Uniform Cladding
JQTSUNARI OKAMOTO AND TAKANORI OKOSHI, kI13MBER,IEEE

Abstract—This paper describes lkst that a simple closed-form

characteristic equation can be derived from the variational formulation

of the wave propagation in an optical fiber, provided that 1) the per-
mittivity in the core is proportional to r“, where r is the radial coordinate
and 1 < a < CO,and 2) the cladtilng is uniform. The obtained equation
is then solved for various permittivity (or refractive-index) profiles.

The results obtained are useful both for the understanding of the dis-
persion characteristics and for the design of iahomogeneous optical

fibers. The optimum profile for a multimode fiber is derived and

discussed

I. INTRODUCTION

v ARIOUS METHODS have been presented for the

analysis of the wave propagation in radially inhomo-

geneous optical fibers [1]–[5]. All of them, however,

required numerical analysis by computer. The propagation

characteristics of an optical fiber having an a-power

refractive-index profile have also been derived by using the

WKB method [6]–[8]. By the WKB method, we may

analyze the propagation characteristics of well-confined

is neither applicable to a single-mode fiber nor to those

modes which are close to cutoff.

The purpose of this paper is to show that a simple closed-

form characteristic equation can be derived from the

variational formulation given by the authors [5], provided

that 1) the permittivity in the core is proportional to r“,

where r is the radial coordinate and a is a parameter between

1 and co, and 2) the cladding is uniform, with an arbitrary

refractive index “step” (or “valley”) at the core–cladding

boundary as shown in Fig. 1. The equation thus obtained

is applicable to a single-mode fiber and to those modes in a

multimode fiber which are close to cutoff.

The obtained equation is solved for various permittivity

profiles. The results obtained are helpful both for the

understanding of the dispersion characteristics and for the
design of inhomogeneous optical fibers. In the final part

of this paper the optimum profile for a multimode fiber is

derived and discussed. It is shown that for a multimode

fiber, a combination of a refractive-index profile with a =

2 + y (where y is a parameter used by Olshansky et al. to

represent the difference in material dispersions in the core

and the cladding [9]; typically, y = 0.3) and a valley at

Fig. 1. Refractive-index pro61es
(a) O<p<

of inhomogeneous optical fibers.
l.(b) p>l.

the core–cladding boundary having a depth approximately

one-half of the refractive-index difference in the core, is the

best choice for minimizing the mode-delay difference.

II. DERIVATION OF THE CHARACTERISTIC EQUATION

FROM VARIATIONAL FORMULATION

A. The et-Power Refractive-Index Profile

modes in a rnuI~imode fiber. However, the WKB method ~ In this paper we consider permittivity profiles expressed

as

[

&l[l – 2pA(r/a~], (O<r <a)
s(r) =

el[l – 2A], (r > a) (1)

where a denotes the core radius, &l the permittivity at the

center, A the relative refractive-index difference between the

core axis and cladding, and p is a parameter representing

the refractive-index step at the core–cladding interface

(see Fig. 1). A smooth continuation at the core-cladding

interface is expressed by p = 1. The parameter A may also

be expressed as

A = (%2 – ’22) ~ % – %

2n12 n,
(2)
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where nl and n2 denote the refractive indices upon the axis

and i~ the cladding, respectively.

B. Variational Formulation

The variational formulation of the wave propagation

in an inhomogeneous optical fiber has been presented by

the authors [5]. The same symbols will be used throughout

this paper unless otherwise stated. By putting (1) into [5,

eq. (17)], the functional to be dealt with in the present case

is given as
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J
a

IIR(r)] = @@R2(a) + (cOzslpo – /?2) R2(r).r dr
o

-Jx32+$R21rdr
H)

am

– w2.51p02pA ~ R2(r)r dr. (3)
Oa

In the previous equation, R(r) k the transverse-field function

(a scalar function representing the radial variation of the

wave amplitude) [5], @@= a~fl, where #$ is a quantity

defined as

(4)

PO denotes the permeability of the medium, @the propaga-

tion constant, and m the azimuthal mode number.

After some algebraic manipulations shown in Appendix I,

the fourth term in (3) may be rewritten as

H)
aa

co2&1p02pA ~ R2(r)r dr
0a

= 2(@2&1po – B2) a R2(r)r dr

f(U +2) o

_ [(@f12 - m2) + (coze(a)vo - f12)a2] R,(a) (5)

(u + 2)

Putting (5) into (3), we obtain

I [R(r)] = C@2(a)

/
— (co2e1po – /32) 4 R’(r)r dr

‘(a;2)

-[ [(:)2 + $R21‘;r
where

(6)

(7)

To solve the variational problem by using Rayleigh-

Ritz method, we express R(r) in terms of a set of orthogonal

functions l’~,~(r) as

R(r) = ~~1 a&m,~(r), (8)

In an axially symmetric case, the F~,~(r) are expressed as

(9)

(.iI,k-1>
m=Q

& =

jm - 1,k, m#O (lo)

where j~,k denotes the kth root of Jn(z) = O.
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Putting (8) into (6) and after some computations, we

may express the functional in terms of a~ as

where bkl denotes Kronecker’s delta. To minimize I with

respect to the a~, the following conditions must be satisfied

for all k:

where

$,

U2

= (U2 - &2)dk~+ 2(f+3 + m) (l:3a)

= &)@2’”” - ‘12)a2”
(l:lb)

Note that variable u defined in (13b) is slightly different

from the conventional one defined as u = (02el,u0 – j?2)1i2a.

(The use of such a modified variable greatly simplifies

equations in the present case.)

In order that a nontrivial solution of (12) exists,

det (~k~) = O (14)

must hold. After some computations shown in the Appendix

II, (14) may be rewritten as

+ (cozt(a)po – fl’)a’ ~ uJ~- 1(u). ~15)

(a + 2) J~(u)

C. Characteristic Equation

In the previous discussions, the parameter @Ogiving the

continuity condition at the core–cladding boundary was

left urldetermined. In the following we calculate the param-

eter @@to make the characteristic equation complete.
The transverse-field function in the cladding is given as

RC1a~(r) = CK~(wr/a) (16)

where
W2 = Q?2 – @2e2po)a2 (17)

and Km denotes the modified Hankel function of the order

m. Note that w thus defined is a conventionally used symbol.

From (16) and [5, eq, (13)], the parameter @ois obtained as

~ = wKm’(w)
P Km(w) “

(18)

Putting (18) into (15) and using the recurrence formulas of
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the modified Hankel functions [11], we obtainl

_ wK.- l(W) _ (P - U&rl(w)) Wz

K.(w) (a + 2)

where 1~ is defined as

<m(w) =
K~2(w)

K~- ,(w)Kti+ l(W) “

(19)

(20)

Equation (19) is the characteristic equation which gives

the propagation constant of an inhomogeneous optical

fiber having a permittivity profile given by (l). Every solu-

tion of (19) is associated with a set of Iinearlv ~olarized. . .-
LP~I modes [10]. An LP~J mode expresses two degenerate

modes; one is identified as HE~+ ~,~ whose fl-dependence

is given as cos (m + 1)0, and the other is TEOZ or EH~_ ~,1

whose 9-dependence is given as cos (m — 1)9.

In the case of a homogeneous-core fiber, we have a = co.

Consequently, (19) may be simplified as

_ wK~- i(W) = uJ.- ~(u)

K.(w) J~(u)
(21)

which agrees with the characteristic equation reported

previously [10], [11].

111. CUTOFF CONDITIONS

Let us examine the cutoff conditions for various propaga-

tion modes. Since the left-hand side of (19) becomes zero

at cutoff (i.e., w = O), UC(the cutoff value of u) is given as

the solution of

Jm-i(uc) = (P – 1) (22)
ucJ~(uC) a

Fig. 2 shows – (J~- ~/uCJM)for several LP~l modes. When a

and p are given, u= is obtained from the cross points of these

curves and the straight line (p – 1)/a. When (p – 1)/a > ~,

that is

(23)

a cutoff exists for the fundamental (HEI ~) mode.

We introduce here the conventional normalized frequency
parameter v defined as

The normalized cutoff frequency v= is given from (24) as

Fig. 2. Plots of – (&l/ uJjjJ versus u. for various modes.

When p = 1 or a = co, the right-hand side of (22) vanishes,

and hence UC = j~- ~,k. Thus (25) leads to

J1 + 21Kjm-l,k,( p=landa #co
Vc =

jm - I,kv Ct= co. (26)

The single-mode limit of the fiber, that is, the cutoff of

the second lowest (TEO1) mode, is given as

v< J1+2/u”u.. (27)

V. = J1 + vu“u.. (25) and

where UC, is the smallest value of the solutions of (22) for

m = 1. Fig. 2 shows that, as the parameter (p – 1)/ct

(= –J~_ ~/ucJ~) increases, UC,also increases, and the range

of the normalized frequency for the single-mode operation

is widened. From (23) and the previous discussions, the

largest value of v for the single-mode operation, within the

limit that no cutoff is present for the HEI ~ mode, may be

obtained when

(28)

where e is an arbitrarily small quantity.

IV. OPTIMUM PROFILE FOR A MULTIMODE FIBER

A. Propagation Constant and Dispersion Characteristics

The propagation constant /3, group delay 7(o), and dis-

persion O(O) may be expressed, by using the solution

(u-v relation) of the characteristic equation (19), as

1? = knl(l – 2xA)’12,

(k = o/c, c: light velocity) (29)

~ ~ dfl _ IVl [1 – A(I + y/4)Qx]

‘dw C (1 – 2xA)’12
(30)2

~A@fi-z(x)A2!~+A:v~ [v(l– x)] (31)1An approximation (1 – c(a)/eJ s O is used in deriving (19).
Therefore, when P # 1, that is, when a step or valley is present at the – dmz N1
core-cladding boundary, a small amount of error will be introduced
by using (19). However, the first-order effect of the refractive-index
step or valley at the core-cladding boundary is represented by the 2 Using the variational expression of the propagation constant, we
terms (p – l/&J and (p – 1) in (19). can directly obtain the same equation for r (see Appendix III).
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where

~1 _ d(kn,)——
dk

(32)

~=_~JdA .—
N1 A d~

(33)

2V du
Q = ;~ = & (1 + “(1 -2& ;$(; 1)~”}

(34)

cm = J~2(u)

J~- l(u)J~+ 1(u)
(35)

and

~_(z+2)u’

‘—7” c1

Among the previously

(36)

listed parameters, NI is the group

index, y is a parameter representing the difference in

material dispersion in the core and the cladding [9] (typic-

ally, y = 0.3), and x is a parameter representing the order

of modes. From (24) we have O s x < 1 and

(

o, for the lowest modex=
1, for the highest mode.

The first and second terms of (31) represent the

dispersion and waveguide dispersion, respectively.

B. Mode-Delay D@erences

(37)

material

Since A is much smaller than unity, we may expand (30)

into a power series in terms of A to obtain the expression

for the delay difference between the lowest mode and the

xth mode, as

& Q T(x) – 7(0) = %A[’-(’+9QIX
‘A’[:- (’‘i)Q1‘2‘“(A’)]’38)

C. Optimum Parameters for a Multimode Fiber

We find from (38) that when

Q = Q.,, = ~ +1Y,4

(39)

d~ becomes very small. However, since a is given as a

function of not only Q but also x, {~, and (~ [(34)], the

optimum value of a varies from mode to mode. Hence,

generally, we cannot obtain the optimum u for all modes.

However, if we control the value of p, we may have a
common optimum value of a regardless of the mode, as

discussed in the following.

For those modes which are far from cutoff and well

confined in the core, w >> 1 and the left-hand side of (19)

becomes negatively very large, and u in the right-hand side

approaches j~,~ (the Icth root of .l~(z) = O). For those
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Fig. 3. Various refractive-index profiles used in the numerical analysis.

modes we may write

(m=l [m=o (40)

and (34) is simplified as

4
—–2=2+y

a“” = Q.,,
(41)

regardless of the mode. For those modes which are close to

cutoff, u is given approximately as the solution of (22).

Fig. 2 shows that when (p – 1)/u > ~, the cutoff value UC

is nearly equal to jm,,~. Therefore, in this particular case

~~ = O for all modes, and (41) also holds. Thus, when

&=aopt=2+y (42)

p>ct/2+l=2+ y/2 (43)

the mode-delay difference tiz becomes very small for all

modes.

In the previous discussions, the condition for p has been

obtained as an inequality. We should note, however, that

in practice if p is excessively large and hence a very deep

valley is present at the core–cladding boundary, many

leaky modes will propagate with relatively small loss and the

actual delay difference will increase. A practical conclusion,

therefore, will be that the value of p slightly larger than

(2 + ,Y/2) is the best choice.

V. DISCUSSIONS

1) The group delay ~(x) has been computed by using

(30)-(36) for four refractive-index profiles illustrated in

Fig. 3 and are shown in Fig. 4(a) (w = co, p = 1), Fig.

4(b) (a = 2 + y,p = 1), Fig. 4(c) (IX = 2 + Y,P = 1.5),

and Fig, 4(d) (u = 2 + y, p = 2.0). It will be found that
when a = 2 + y and p = 2 + y/2 [Fig. 4(d)], mode-

delay differences are reduced dramatically.

2) Analysis of fibers having such a “valley” have been

reported by Kawakami et al. (for a three-layer slab model

[12] and a three-layer axially symmetric model [13]) and

Furuya et al. (for a three-layer slab model [14] and a slab
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Fig. 4. Group delay ~(x) of inhomogeneous optical fibers having
index profiles shown in, Fig, 3.

model with a quadratic core profile [15]). Kawakami et al.

aimed at broadening the bandwidth of a single-mode fiber

by obtaining a waveguide dispersion which cancels the

material dispersion, whereas Furuya et al. aimed at the

rejection of higher modes in a multimode fiber. The effective-

ness of such a “valley” has also been verified experimentally

[16].

3) The optimum value of p has not yet been determined

precisely. Moreover, the optimization described in this

paper is limited to the a-power distribution in the core.

The real optimization of the refractive-index profile without

such constraints is now being investigated; this will be

reported elsewhere.

VI. CONCLUSION

The results obtained may be summarized as follows.

1) The characteristic equation for an inhomogeneous

optical fiber having a permittivity profile given by (1) has

been obtained analytically as (19). As the parameter

(P - 1)/a increases, the maximum normalized frequency

giving the single-mode limit increases. However, when

(p – 1)/Lx > +, a cutoff (low-frequency limit) appears for

the fundamental mode.

2) From (19) we obtain the propagation constant, group

delay, and waveguide dispersion as (29)–(31). Numerical

solutions of these propagation characteristics for various

refractive-index profiles are shown.

3) The combination of u = 2 + y and p = 2 + y/2

is the optimum choice for a multimode fiber. In such a

case the mode-delay differences can be very small for all

modes including those which are close to cutoff.

APPENDIX I

Derivatation of (5)

The transverse-field function satisfies the following

differential equation and the continuity condition [5]:

%(’9+[“’’(r)~”-“ -$1 ‘(r)=0‘A’)
[&%]r.a=[fidR~$)]r=aAm,. (W

Multiplying (Al) by r2(dR/dr) and integrating with respect

to r, we obtain

J3%r%)dr
J

4

+ (co’&l#o – p2)

‘2 RdRdr_m2 “RdRdr

o dr J o dr

J()

au ‘2 RdRdr=o— CO2Zl/Ao2pA ~
dr

. (A3)
Oa

Partial integration of each term of (A3) and use of (A2)
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lead to

421

J

cc

J

m

n2(r)@2(r)r dr + kn ~ @2(r)r dr
n oj’ dj..—=

k dkH)
au

w2&lp02pA ~ R2(r)r dr
Oa

J

_ 2(f02E1~o – ~2) a ~2(r)r dr
—

(&+2j o

Jo

(All)

When the relative refractive-index difference A and the cm-e

radius a are given, we may determine the propagation

constant ~ from the characteristic equation (19), and further

determine the values of u, w, and the expansion coefficients

a~ (k := 1,2, ~“ “). Using the a, we may express the transverse

field in the core as

_ [(@p’ - m’) + (cD28(a)po - f12)a2] ~,(a) ~A4)

(a + 2)

APPENDIX II

Derivatation of (15)

From (13a) and (14), we obtain

Q + (U2 – 212) Q . . .

Q f2+(u2-a22) ““”

h h ““”

(--2

!2

(-2 + (fi – 1N2)

= O (A5)

(A6)

Putting (A12), (16), and (5) into (Al 1), we obtain (30).
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where

!2 = 2(Qfl + m).

Equation (A5) may be rewritten to

12 1
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