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Analysis of Wave Propagation in Optical Fibers
Having Core with a-Power Refractive-Index
Distribution and Uniform Cladding
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Abstract—This paper describes first that a simple closed-form
characteristic equation can be derived from the variational formulation
of the wave propagation in an optical fiber, provided that 1) the per-
mittivity in the core is proportional to #”, where r is the radial coordinate
and 1 < @ < 00, and 2) the cladding is uniform. The obtained equation
is then solved for various permittivity (or refractive-index) profiles.
The results obtained are useful both for the understanding of the dis-
persion characteristics and for the design of inhomogeneous optical
fibers. The optimum profile for a multimode fiber is derived and
discussed.

1. INTRODUCTION

ARIOUS METHODS have been presented for the

analysis of the wave propagation in radially inhomo-
geneous optical fibers [1]-[5]. All of them, however,
required numerical analysis by computer. The propagation
characteristics of an optical fiber having an a-power
refractive-index profile have also been derived by using the
WKB method [6]-[8]. By the WKB method, we may
analyze the propagation characteristics of well-confined
modes in a multimode fiber. However, the WKB method
is neither applicable to a single-mode fiber nor to those
modes which are close to cutoff.

The purpose of this paper is to show that a simple closed-
form characteristic equation can be derived from the
variational formulation given by the authors [5], provided
that 1) the permittivity in the core is proportional to r%
where r is the radial coordinate and « is a parameter between
1 and co, and 2) the cladding is uniform, with an arbitrary
refractive index “step” (or ‘“valley™) at the core-cladding
boundary as shown in Fig. 1. The equation thus obtained
is applicable to a single-mode fiber and to those modes in a
multimode fiber which are close to cutoff.

The obtained equation is solved for various permittivity
profiles. The results obtained are helpful both for the
understanding of the dispersion characteristics and for the
design of inhomogeneous optical fibers. In the final part
of this paper the optimum profile for a multimode fiber is
derived and discussed. It is shown that for a multimode
fiber, a combination of a refractive-index profile with o =
2 + y (where y is a parameter used by Olshansky ef al. to
represent the difference in material dispersions in the core
and the cladding [9]; typically, y = 0.3) and a valley at
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Fig. 1. Refractive-index profiles of inhomogeneous optical fibers.
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the core—cladding boundary having a depth approximately
one-half of the refractive-index difference in the core, is the
best choice for minimizing the mode-delay difference.

II. DERIVATION OF THE CHARACTERISTIC EQUATION
FROM VARIATIONAL FORMULATION

A. The u-Power Refractive-Index Profile

In this paper we consider permittivity profiles expressed
as

O<r<a
(r > a) €))

where a denotes the core radius, g; the permittivity at the
center, A the relative refractive-index difference between the
core axis and cladding, and p is a parameter representing
the refractive-index step at the core—cladding interface
(see Fig. 1). A smooth continuation at the core—cladding
interface is expressed by p = 1. The parameter A may also
be expressed as

&1 — 2pA(r/a)],
g(r) =
gf1 — 2A],

2 _ 2 -
A = (nl 2”2 ) . 7y Py (2)

2n, om

where n, and n, denote the refractive indices upon the axis
and in the cladding, respectively.

B. Variational Formulation

The variational formulation of the wave propagation
in an inhomogeneous optical fiber has been presented by
the authors [5]. The same symbols will be used throughout
this paper unless otherwise stated. By putting (1) into [5,
eq. (17)], the functional to be dealt with in the present case
is given as
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TTRO)] = OR@) + @oyo — §7) [ Ry dr
0

a 2 2
- dR + ™ R rar
o L\dr r?

— @%g,pg2pA f
0

(-2) RX(r)r dr. 3)

In the previous equation, R(r) is the transverse-ficld function
(a scalar function representing the radial variation of the
wave amplitude) [5], ®; = a¢,, where ¢, is a quantity

defined as
- 1 . dRclad(’”)] 4
¢ﬂ |:Rclad(r) dr r=a ( )

Mo denotes the permeability of the medium, B the propaga-
tion constant, and m the azimuthal mode number.

After some algebraic manipulations shown in Appendix I,
the fourth term in (3) may be rewritten as

w2e, 1o2pA f (Z)a R*r)r dr |
a

_ 2(a)2£1,u0 ﬁ ) 2
= -——————(“ 1) f R*(r)r dr

_ [(q)ﬂ — m?) + (0’e(a)uy —
(x + 2)

Putting (5) into (3), we obtain
I[R(r)] = Q4R*(a)

ﬂZ)aZ] RZ(a). (5)

+ @ i 5 (0%e;pto — B2 f: R*(r)r dr
a dR 2 m2 2
“H(ﬁ) + R rar ©
where
Q - (I) + [((Dﬂ - mz) + (a) g(@)uy — ﬁz)az:l Rz(a).
(x + 2)
Q)

To solve the variational problem by using Rayleigh—
Ritz method, we express R(r) in terms of a set of orthogonal
functions F,, ,(r) as

ROY = 3 ayFusl0) ®

In an axially symmetric case, the F,, ,(r) are expressed as

NERACRL

F = 9

malr) = 27 A (9)
b= j1,k~1, m=20

" Nmere m#O (10)

where j, , denotes the kth root of J,(z) = 0.
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Putting (8) into (6) and after some computations, we
may express the functional in terms of a, as

2., 8 &
foves ) = 5% £ 5 e

(w2£1u0 - ﬂz) : kZl 12'1 4,401

+ o
(@ +2)
1 0 o] A
- 3 L L @iy — 2m) (11)
where &;; denotes Kronecker’s delta. To minimize 7 with

respect to the g, the following cond1t1ons must be satisfied
for all k:

o1 2 &
—=—Z @Sy =0 (12)
da, a’i=
where
Su = W? ~ 208y + 2Q; + m) (13a)
2 o 2 2y ,2 p

uc = we - a“, 13b

o @oike = ) (130)

Note that variable » defined in (13b) is slightly different
from the conventional one defined as # = (w?e pp — f2)%a.
(The use of such a modified variable greatly simplifies
equations in the present case.)

In order that a nontrivial solution of (12) exists,

det (8;) =0 (14

must hold. After some computations shown in the Appendix
II, (14) may be rewritten as

(@, + m) [1 + (((I;———J—:—g-]

(0’s(a)po — f)a’
(ax + 2)

— qu._ l(u)
T )

(13)

C. Characteristic Equation

In the previous discussions, the parameter @, giving the
continuity condition at the core-cladding boundary was
left undetermined. In the following we calculate the param-
eter @, to make the characteristic equation complete.

The transverse-field function in the cladding is given as

Roaa(r) = CK,(wr/a) (16)

where
= (B* — w’epp)d® an

and K, denotes the modified Hankel function of the order

m. Note that w thus defined is a conventionally used symbol.

From (16) and [5, eq. (13)], the parameter ®@; is obtained as
_ WK,/(w)

P Kaw)

Putting (18) into (15) and using the recurrence formulas of

(18)
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the modified Hankel functions [11], we obtain®

K, (w) (x +2)
— u']m—l(u) + (p - 1) u2 (19)
I 1) o
where £, is defined as
2
Ew) = o ) 20)

Ko i WK 1(W) '

Equation (19) is the characteristic equation which gives
the propagation constant of an inhomogeneous optical
fiber having a permittivity profile given by (1). Every solu-
tion of (19) is associated with a set of linearly polarized
LP,,, modes [10]. An LP,, mode expresses two degenerate
modes; one is identified as HE,,,; ; whose 6-dependence
is given as cos (m + 1)0, and the other is TE,,; or EH,,_, ;
whose 0-dependence is given as cos (m — 1)6.

In the case of a homogeneous-core fiber, we have « = 0.
Consequently, (19) may be simplified as

— WKm~ i(w) — UJ - l(u)
K,(w) In(t)

which agrees with the characteristic equation reported
previously [10], [11].

2y

III. Curorr CONDITIONS

Let us examine the cutoff conditions for various propaga-
tion modes. Since the left-hand side of (19) becomes zero
at cutoff (i.e., w = 0), u, (the cutoff value of u) is given as
the solution of

_Jm-—l(uc) — (p - 1)
chm(uc) o .

(22)

Fig. 2 shows —(J,,-,/u.J,,) for several LP,,; modes. When «
and p are given, u, is obtained from the cross points of these
curves and the straight line (p — 1)/a. When (p — 1)ja > 4,
that is

2(oc+2)

3 (23)

a cutoff exists for the fundamental (HE, ;) mode.
We introduce here the conventional normalized frequency
parameter v defined as

vz=(d+2)u2
o

+ w? = wleuea?2A. 24

The normalized cutoff frequency v, is given from (24) as

v, = \/1 + 2/ u,. (25)

1 An approximation (1 — &(@)/ez) ~ 0 is used in deriving (19).
Therefore, when p # 1, that is, when a step or valley is present at the
core~cladding boundary, a small amount of error will be introduced
by using (19). However, the first-order effect of the refractive-index
step or valley at the core—cladding boundary is represented by the
terms (p — 1/&,) and (p — 1) in (19).
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Fig. 2. Plots of — (Jyu—1/uclm) versus u, for various modes.

When p = 1 ora = o0, the right-hand side of (22) vanishes,
and hence u, = j,_; & Thus (25) leads to

V1t 2t jmospe P =

jm—l,k9 o = Q0.

land o # ©
vc
(26)

The single-mode limit of the fiber, that is, the cutoff of
the second lowest (TEy,) mode, is given as

o <1+ 2o u, )

where u, is the smallest value of the solutions of (22) for
m = 1. Fig. 2 shows that, as the parameter (p — 1)/a
(= —J,-1/uJ,) increases, u also increases, and the range
of the normalized frequency for the single-mode operation
is widened. From (23) and the previous discussions, the
largest value of v for the single-mode operation, within the
limit that no cutoff is present for the HE,, mode, may be
obtained when

=(oc+2)_6

2 (28)

where & is an arbitrarily small quantity.

IV. OPTIMUM PROFILE FOR A MULTIMODE FIBER
A. Propagation Constant and Dispersion Characteristics

The propagation constant f, group delay 7(w), and dis-
persion o(w) may be expressed, by using the solution
(u-v relation) of the characteristic equation (19), as

B = kn,(1 — 2xA)'/?,

(k = w/e, c: light velocity) 29
T A ﬁ — & [1 - AQ + y/4)Qx] (30)2
do ¢ (1 = 2xA)M?
and
d*g  1(x),,d*n N, a2
2%l T ppdmy £\ N 4T 31
7s wdco2 N, di? + c vdvz [ ©] G

2 Using the variational expression of the propagation constant, we
can directly obtain the same equation for 7 (see Appendix III).
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where
__ d(kny)
T 32)
Y A dA (33)
N, Adi
Q_udu m+2ﬂ1+ 2x(1 — &,/C,) }
(34)
J 2 (1)
_ m () 35
S VAN (35)
and
x=(0€+2)u_z_’ (36)
o v

Among the previously listed parameters, N, is the group
index, y is a parameter representing the difference in
material dispersion in the core and the cladding [9] (typic-
ally, y = 0.3), and x is a parameter representing the order
of modes. From (24) we have 0 < x < 1 and

f
X =

i
The first and second terms of (31) represent the material
dispersion and waveguide dispersion, respectively.

for the lowest mode

for the highest mode. 37

B. Mode-Delay Differences

Since A is much smaller than unity, we may expand (30)
into a power series in terms of A to obtain the expression
for the delay difference between the lowest mode and the
xth mode, as

&gruy-w»=%lp[1—(y+gg]x

+MB—O+94ﬁ+mﬁy(m
C. Optimum Parameters for a Multimode Fiber

We find from (38) that when

1

Q=Qopt=1+y/4

(39

ot becomes very small. However, since a is given as a
function of not only Q but also x, &, and (, [(34)], the
optimum value of « varies from mode to mode. Hence,
generally, we cannot obtain the optimum « for all modes.
However, if we control the value of p, we may have a
common optimum value of « regardless of the mode, as
discussed in the following.

For those modes which are far from cutoff and well
confined in the core, w > 1 and the left-hand side of (19)
becomes negatively very large, and « in the right-hand side
approaches j, ; (the kth root of J,(z) = 0). For those
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Fig. 3. Variousrefractive-index profiles used in the numerical analysis.

modes we may write
b=l [=0
and (34) is simplified as
4

(40)

Oopt =

—2=2+y (41

opt
regardless of the mode. For those modes which are close to
cutoff, » is given approximately as the solution of (22).
Fig. 2 shows that when (p — 1)/ > 3, the cutoff value u,
is nearly equal to j, .. Therefore, in this particular case
{.» = 0 for all modes, and (41) also holds. Thus, when

=0y =2+
p>of2+1=2+4y2

(42)
(43)

the mode-delay difference dt becomes very small for all
modes.

In the previous discussions, the condition for p has been
obtained as an inequality. We should note, however, that
in practice if p is excessively large and hence a very deep
valley is present at the core-cladding boundary, many
leaky modes will propagate with relatively small loss and the
actual delay difference will increase. A practical conclusion,
therefore, will be that the value of p slightly larger than
(2 + y/2) is the best choice.

V. DISCUSSIONS

1) The group delay z(x) has been computed by using
(30)-(36) for four refractive-index profiles illustrated in
Fig. 3 and are shown in Fig. 4(a) (x = o0, p = 1), Fig.
4b) (w =2+ y,p=1), Fig. 4c) (¢ =2 + y,p = 1.5),
and Fig. 4d) (@ = 2 + y, p = 2.0). It will be found that
when « =2 + y and p = 2 + »/2 [Fig. 4(d)], mode-
delay differences are reduced dramatically.

2) Analysis of fibers having such a “valley” have been
reported by Kawakami et al. (for a three-layer slab model
[12] and a three-layer axially symmetric model [13]) and
Furuya et al. (for a three-layer slab model [14] and a slab
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Fig. 4. Group delay =(x) of inhomogeneous optical fibers having
index profiles shown in, Fig, 3.

model with a quadratic core profile [15]). Kawakami er al.

aimed at broadening the bandwidth of a single-mode fiber

by obtaining a waveguide dispersion which cancels the

material dispersion, whereas Furuya er al. aimed at the

rejection of higher modes in a multimode fiber. The effective-

ness of such a “valley” has also been verified experimentally
. [16].

3) The optimum value of p has not yet been determined
precisely. Moreover, the optimization described in this
paper is limited to the a-power distribution in the core.
The real optimization of the refractive-index profile without
such constraints is now being investigated; this will be
reported elsewhere.

VI. CoNCLUSION

The results obtained may be summarized as follows.

1) The characteristic equation for an inhomogeneous
optical fiber having a permittivity profile given by (1) has
been obtained analytically as (19). As the parameter
(p — 1)/a increases, the maximum normalized frequency
giving the single-mode limit increases. However, when
(p — Dja > 1, a cutoff (low-frequency limit) appears for
the fundamental mode.

2) From (19) we obtain the propagation constant, group
delay, and waveguide dispersion as (29)-(31). Numerical
solutions of these propagation characteristics for various
refractive-index profiles are shown.

3) The combination of « =2 + y and p = 2 + y/2
is the optimum choice for a multimode fiber. In such a
case the mode-delay differences can be very small for all
modes including those which are close to cutoff.

ArpENDIX 1
Derivatation of (5)

The transverse-field function satisfies the following
differential equation and the continuity condition [5]:

ld(dR
——\r

dR 20y — g2 — _
I dr) + [w e(ripe — B rz] R(r) =0 (Al

[_._r_ {Li_lj:l - l: r dRclad(r)] é q)ﬂ' (A2)
R(T) di‘ r=a Rclad(r) di‘ r=a

Multiplying (A1) by r*(dR/dr) and integrating with respect
to », we obtain

J‘” de( dR)
r——\r dr
0 di‘ dr

dr
+ (w?equy — Bz)f 2R IR gy _ mzf rRR 4,
0 dr o dr

a

— w?e, to2pA f
0

(-r) 2R R 4 — 0. (A3)
a dr

Partial integration of each term of (A3) and use of (A2)
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lead to
wzsl,uo2pAf (I) R2(r)r dr
0 a
2 — 2 a
- 2w*e 4o ) B )J R(r)r dr
(¢ +2) 0
2 2 2 _ R2\,2
_ [((Dﬂ m ) + (m 8(‘1)/‘0 ﬁ )a } RZ(a)' (A4)
(¢ + 2)
APrpPENDIX 11
Derivatation of (15)
From (13a) and (14), we obtain
Q+(u2—212) Q ‘e Q
Q Q4 w2 ~2% - Q.
0 0 Q+ @ -1
=0 (A5)
where
Q = 2Qs + m). (A6)
Equation (A5) may be rewritten to
N
Lo ¥ 1 (A7)

Q 1w - A%

Putting (10) into (A7), setting N — o0, and using one of the
Bessel-function formulas [17], we obtain

_J o(1)

) m = 0
O 1 2uJ1(u)
——kzﬁ m - 1 Julw) 0. (A8
m, m # 0. (AS8)

Hence, from (A6) and (A8) we have
(A9

APPENDIX 111
Variational Expression of Group Delay

Variational equation (3) of the wave propagation is
equivalent to

f ()@ dr — f ) {(dq’)2 + m—: <1>2} rdr

0 0 dr r

P =

on ®*(r)r dr
° (A10)

which should be stationary with respect to a small variation
of ®. Therefore, we may find df/dk by differentiating (A10)
only where k appears explicitly. Thus, as shown by Case

[18],
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8B fw n*(r)®*(r)r dr + fw kn S—Z O*(r)r dr
Y0 ‘ 0

\ ' fw O2(r)r dr

0

(All)

When the relative refractive-index difference A and the core
radius a are given, we may determine the propagation
constant f§ from the characteristic equation (19), and further
determine the values of u, w, and the expansion coefficients
a,(k = 1,2, - ). Using the g, we may express the transverse
field in the core as

v _ Iuller/a)
= WP — A

Putting (A12), (16), and (5) into (A11), we obtain (30).

R(r) = R, (A12)
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